Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Res Sq ; 2023 Apr 05.
Article in English | MEDLINE | ID: covidwho-2318424

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is protective in cardiovascular disease, lung injury and diabetes yet paradoxically underlies our susceptibility to SARs-CoV2 infection and the fatal heart and lung disease it can induce. Furthermore, diabetic patients have chronic, systemic inflammation and altered ACE2 expression resulting in increased risk of severe COVID-19 and the associated mortality. A drug that could increase ACE2 activity and inhibit cellular uptake of severe acute respiratory syndrome coronavirus 2 (SARs-CoV2), thus decrease infection, would be of high relevance to cardiovascular disease, diabetes and SARs-CoV2 infection. While the need for such a drug lead was highlighted over a decade ago receiving over 600 citations, 1 to date, no such drugs are available. 2 Here, we report the development of a novel ACE2 stimulator, designated '2A'(international PCT filed), which is a 10 amino acid peptide derived from a snake venom, and demonstrate its in vitro and in vivo efficacy against SARs-CoV2 infection and associated lung inflammation. Peptide 2A also provides remarkable protection against glycaemic dysregulation, weight loss and disease severity in a mouse model of type 1 diabetes. No untoward effects of 2A were observed in these pre-clinical models suggesting its strong clinical translation potential.

2.
PLoS Biol ; 20(8): e3001728, 2022 08.
Article in English | MEDLINE | ID: covidwho-1974223

ABSTRACT

Children typically experience more mild symptoms of Coronavirus Disease 2019 (COVID-19) when compared to adults. There is a strong body of evidence that children are also less susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection with the ancestral viral isolate. However, the emergence of SARS-CoV-2 variants of concern (VOCs) has been associated with an increased number of pediatric infections. Whether this is the result of widespread adult vaccination or fundamental changes in the biology of SARS-CoV-2 remain to be determined. Here, we use primary nasal epithelial cells (NECs) from children and adults, differentiated at an air-liquid interface to show that the ancestral SARS-CoV-2 replicates to significantly lower titers in the NECs of children compared to those of adults. This was associated with a heightened antiviral response to SARS-CoV-2 in the NECs of children. Importantly, the Delta variant also replicated to significantly lower titers in the NECs of children. This trend was markedly less pronounced in the case of Omicron. It is also striking to note that, at least in terms of viral RNA, Omicron replicated better in pediatric NECs compared to both Delta and the ancestral virus. Taken together, these data show that the nasal epithelium of children supports lower infection and replication of ancestral SARS-CoV-2, although this may be changing as the virus evolves.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Epithelial Cells , Humans , SARS-CoV-2/genetics
3.
FEBS J ; 288(17): 5042-5054, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1295003

ABSTRACT

The COVID-19 pandemic has highlighted the vulnerability of people with diabetes mellitus (DM) to respiratory viral infections. Despite the short history of COVID-19, various studies have shown that patients with DM are more likely to have increased hospitalisation and mortality rates as compared to patients without. At present, the mechanisms underlying this susceptibility are unclear. However, prior studies show that the course of COVID-19 disease is linked to the efficacy of the host's T-cell responses. Healthy individuals who can elicit a robust T-cell response are more likely to limit the severity of COVID-19. Here, we investigate the hypothesis that an impaired T-cell response in patients with type 2 diabetes mellitus (T2DM) drives the severity of COVID-19 in this patient population. While there is currently a limited amount of information that specifically addresses T-cell responses in COVID-19 patients with T2DM, there is a wealth of evidence from other infectious diseases that T-cell immunity is impaired in patients with T2DM. The reasons for this are likely multifactorial, including the presence of hyperglycaemia, glycaemic variability and metformin use. This review emphasises the need for further research into T-cell responses of COVID-19 patients with T2DM in order to better inform our response to COVID-19 and future disease outbreaks.


Subject(s)
COVID-19/immunology , Diabetes Mellitus, Type 2/immunology , Hyperglycemia/immunology , T-Lymphocytes/immunology , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/virology , Humans , Hyperglycemia/complications , Hyperglycemia/pathology , Hyperglycemia/virology , Pandemics , SARS-CoV-2/pathogenicity , T-Lymphocytes/virology
SELECTION OF CITATIONS
SEARCH DETAIL